A posteriori analysis of finite element discretizations of a Naghdi shell model

نویسندگان

  • Christine Bernardi
  • Adel Blouza
  • Frédéric Hecht
  • Hervé Le Dret
چکیده

We consider two finite element discretizations of the Naghdi equations which model a thin three-dimensional shell. Both of them are derived from a mixed formulation of these equations, and a penalty term is added in the second one. The a posteriori analysis of the discrete problems leads to the construction of error indicators which satisfy optimal estimates. We describe a mesh adaptivity strategy relying on these indicators and we present some numerical experiments that confirm its efficiency. Résumé: Nous considérons deux discrétisations par éléments finis des équations de Naghdi qui modélisent une coque tridimensionnelle de faible épaisseur. Les deux problèmes discrets sont construits à partir d’une formulation mixte de ces équations, avec un terme de pénalisation supplémentaire dans le second. L’analyse a posteriori de ces problèmes mène à la construction d’indicateurs d’erreur qui satisfont des estimations optimales. Nous proposons une stratégie d’adaptation de maillage basée sur ces indicateurs et présentons quelques expériences numériques qui confirment son efficacité. 1 Université Pierre et Marie Curie-Paris6, UMR 7598 LJLL, Paris, F-75005 France; CNRS, UMR 7598 LJLL, Paris, F-75005 France. 2 Laboratoire de Mathématiques Raphaël Salem (UMR 6085 CNRS), Université de Rouen, avenue de l’Université, B.P. 12, F-76801 Saint-Étienne-du-Rouvray, France. e-mail addresses: [email protected], [email protected], [email protected], [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Formulation for aBa ed , Fluid { Loaded , Finite Cylindrical

A new method for obtaining the response of a baaed, uid{loaded, nite cylindrical shell using the nite element method is presented. The Galerkin nite element formulation for this problem utilizes a Neumann Green's function representation of the pressure loading on the shell. By representing the pressure loading in this manner, only the structure need be discretized. Both C 0 and C 1 nite element...

متن کامل

A Continuum Shell-beam Finite Element Modeling of Buried Pipes with 90-degree Elbow Subjected to Earthquake Excitations

  In the current work, the seismic analysis of bent region in buried pipes is performed, and effects of soil properties and modeling methods on pipe’s response are investigated. To do this task Beam, Beam-Shell Finite Element modeling and a Continuum shell FE models of a 90 degrees elbow are employed. In the Beam model, the pipe is simulated by beam elements while combined shell-beam elements a...

متن کامل

Insight into finite element shell discretizations by use of the ‘ ‘ basic shell mathematical model ’ ’ Phill

The objective of this paper is to gain insight into finite element discretizations of shells using the basic shell mathematical model and, in particular, regarding the sources of ‘‘locking’’. We briefly review the ‘‘basic shell mathematical model’’ and present a formulation of shell finite elements based on this model. These shell finite elements are equivalent to the widely-used continuum mech...

متن کامل

A Posteriori Error Analysis of Space-Time Finite Element Discretizations of the Time-Dependent Stokes Equations

We present a novel a posteriori error analysis of spacetime finite element discretizations of the time-dependent Stokes equations. Our analysis is based on the equivalence of error and residual and a suitable decomposition of the residual into spatial and temporal contributions. In contrast to existing results we directly bound the error of the full space-time discretization and do not resort t...

متن کامل

A Discontinuous Galerkin Method for the Naghdi Shell Model

Abstract. We propose a mixed discontinuous Galerkin method for the bending problem of Naghdi shell, and present an analysis for its accuracy. The error estimate shows that when components of the curvature tensor and Christoffel symbols are piecewise linear functions, the finite element method has the optimal order of accuracy, which is uniform with respect to the shell thickness. Generally, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008